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The dynamical instability of many-body systems can best be characterized
through the local Lyapunov spectrum {l}, its associated eigenvectors {d}, and
the time-averaged spectrum {OlP}. Each local Lyapunov exponent l describes
the degree of instability associated with a well-defined direction—given by the
associated unit vector d—in the full many-body phase space. For a variety of
hard-particle systems it is by now well-established that several of the d vectors,
all with relatively-small values of the time-averaged exponent OlP, correspond
to quite well-defined long-wavelength ‘‘modes.’’ We investigate soft particles
from the same viewpoint here, and find no convincing evidence for correspond-
ing modes. The situation is similar—no firm evidence for modes—in a simple
two-dimensional lattice-rotor model. We believe that these differences are
related to the form of the time-averaged Lyapunov spectrum near OlP=0.

KEY WORDS: Local Lyapunov exponents; Lyapunov modes; hard disk fluid;
soft disk fluid.

1. INTRODUCTION

Nonequilibrium molecular dynamics has been used to establish a close link
between microscopic dynamical phase-space instabilities and the macro-
scopic irreversible dissipation associated with the second law of thermo-
dynamics. (1–5) The simplest such connection between microscopic dynamics



and macroscopic dissipation results when a Nosé-Hoover thermostat is
used to control a nonequilibrium steady state. In this case the instanta-
neous external entropy production rate (due to heat extracted by the
thermostat) is proportional to the sum of the instantaneous Lyapunov
exponents:

Ṡ/k — −C l.

Such microscopic-to-macroscopic connections have focussed attention
on these instantaneous (or ‘‘local’’) Lyapunov exponents, {l}, and their
time averages, {OlP}. A very recent development is the discovery of
‘‘modes’’ (6–13) corresponding to the exponents. Because our current theoreti-
cal understanding of these modes, as well as the exponents themselves, is
still rudimentary, the present work treats only equilibrium systems. These
results can serve as a basis for extending our understanding to the far-
from-equilibrium systems which are a strong focus of current research in
many-body dynamics.

At equilibrium, and away, the local exponents together with their
associated eigenvectors provide the fundamental microscopic description of
phase-space instability. Recent investigations (6–13) have shown that some of
the Lyapunov exponents, those describing relatively-weak instabilities with
near-zero growth rates, correspond to wavelike eigenvectors, both longitu-
dinal and transverse. The phase relations in these eigenvectors differ from
those of acoustic waves. The coordinate and momentum displacements in
the Lyapunov ‘‘modes’’ are ‘‘in phase’’ reflecting the exponential time
dependence elt of Lyapunov instability. In acoustic waves the coordinate
and momentum displacements have a phase difference of p2 , reflecting their
periodic time dependence e iwt.

Computing these instantaneous eigenvectors requires additional
N-body solutions, one for each vector, so that the work for a complete
description varies as the square of the number of particles, N2. Worse yet,
the additional computational effort involved in keeping of the order of N2

eigenvectors orthonormal, where each eigenvector has of the order of
N components, varies as N3. Nevertheless, presentday gigahertz serial-
processor work stations are capable of following the complete spectrum of
eigenvalues and eigenvectors for systems of a thousand particles.

The present work describes detailed computations for soft disks at
equilibrium. Though some qualitative modelike character is present in the
soft-disk results the evidence is much less convincing than corresponding
hard-disk simulations. Likewise, lattice-rotor simulations give no firm
evidence for modes in two dimensions.
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We review the definition and evaluation of the Lyapunov exponents
and their associated d vectors in the next section. Numerical results follow,
for a dense soft-disk fluid, and we include corresponding observations for
lattice-rotor problems. Our exploration of the fundamental question
‘‘Modes or Not?’’ and our overall conclusions make up the final two
sections.

It is our great pleasure to dedicate this work to Bob Dorfman, whose
generous, careful, and perceptive exploration of statistical mechanics (5) has
enriched the field and our appreciation of it.

2. LOCAL LYAPUNOV EXPONENTS

The ‘‘local’’ (or ‘‘instantaneous’’) Lyapunov exponents quantify a
special set of comoving and corotating (moving, and rotating, in the neigh-
borhood of a particular ‘‘reference solution’’ in phase space) orthogonal
expansion and contraction rates. For a two-dimensional system of N par-
ticles, the complete {x, y, px, py} phase space is 4N-dimensional, and 4N
local Lyapunov exponents {l} describe the expansion and contraction rates
of an infinitesimal ‘‘ball’’ (or ‘‘extension in phase’’) centered on the refer-
ence trajectory. The usual ‘‘global’’ Lyapunov exponents {OlP} are the
long-time-averaged values of the local exponents. It is also possible to carry
out simulations restricted to the 4N−1-dimensional energy shell, in which
case there are 4N−1 local Lyapunov exponents. The instantaneous {l}
and {d}, as well as their fluctuations, depend upon the coordinate system
chosen to describe the system, while the long-time-averaged spectrum of
exponents {OlP} does not. (14)

For the chosen coordinate system we have to follow the changing
orientations of the vectors—along which the orthogonal rates are calculated—
empirically. The rates and orientations both follow from continuous
Gram–Schmidt orthonormalization of vectors linking the central ‘‘reference
trajectory’’ to 4N infinitesimally-separated nearby ‘‘satellite trajectories.’’
In the Hamiltonian case (which we treat here) and also in some special
homogenous nonequilibrium situations, (15) the exponents and their eigen-
vectors have a symmetry property—‘‘pairing’’—which makes it unneces-
sary to calculate the whole spectrum. In these cases the sums of pairs of
exponents, l1+l4N, l2+l4N−1, l3+l4N−2,... are identical, so that only half
the spectrum, {l1 [ j [ 2N}, needs to be calculated. In all of our work here the
sum of the complete spectrum of exponents vanishes as a consequence of
the underlying Hamiltonian mechanics.

The dependence of the local exponents and their d vectors on the
chosen coordinate system is easy to demonstrate in Hamiltonian mechan-
ics. (14) With Cartesian coordinates the introduction of a simple scale
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factor s into the Hamiltonian, (analogous to simple changes of length and
mass units which leave phase volume unchanged)

H=F+K0 (F/s)+Ks,

where the potential energy is the usual pairwise-additive sum:

F — C
i < j
fij; K —C p2/(2m),

leaves the dynamics, {q(t), q̇(t), q̈(t),...} unchanged, but does change the
relative contributions of the coordinates {q} and momenta {p} to the local
Lyapunov exponents and to their associated d vectors.

The directions in which the growth and decay rates are measured at a
particular phase-space point represent the integrated past history in the
neighborhood of the trajectory passing through the point. There are several
algorithms for the numerical evaluation of the local exponents. For the
relatively large systems described here, with N of order 1000, the rescaling
approach discovered by Stoddard and Ford, (16) by Benettin and his
coworkers, (17) and by Shimada and Nagashima (18) is the only practical
choice. It should be mentioned that Stoddard and Ford considered only the
largest Lyapunov exponent in their work.

In our case we find the positive half of the Lyapunov spectrum by
starting with 2N orthogonal 4N-dimensional vectors {d}. These vectors
describe the locations of 2N satellite trajectories infinitesimally close to the
reference trajectory. All 2N+1 trajectories are advanced in time by dt and
the resulting new vectors are orthonormalized using the Gram–Schmidt
procedure. That is, for each new vector dj, the projections of all earlier
vectors {dk < j} in the direction of the new one are subtracted before the
complete set of vectors {d} is normalized. The normalization step provides
estimates for the instantaneous exponents,

l(t) 4 (1/dt) ln[d(t+dt2)/d(t−
dt
2)],

with the estimates becoming exact for sufficiently small dt. The time
averages of these estimates {OlP} then give the conventional Lyapunov
spectrum.

3. RESULTS FOR SOFT DISKS

The eigenvector d1 associated with the largest (when time-averaged)
Lyapunov exponent, Ol1P has been carefully studied for series of fairly
large dense-fluid systems, with as many as one million particles. (19–21) In
that work a specially smooth short-ranged potential was used to eliminate
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the influence of force-law singularities on the (fourth-order Runge–Kutta)
numerical integration errors. Here we consider the same dense two-dimen-
sional fluid, but at equilibrium.

The specially smooth soft-disk potential function is pairwise-additive:

F=C
i < j
fij; f=100(1−r2)4,

and vanishes beyond the cutoff distance r=1. Both the energy per particle,

(F+K)/N=5C
i < j
fij+C

i
(p2i /2m)6;N,

and the volume (area) per particle, L2/N, are chosen equal to unity in all
of our numerical work. With these choices the potential energy of the
system is about 30% of the total energy:

OF/NP 4 0.30; OK/NP 4 0.70.

A timestep of dt=0.01 and an initial reference-to-satellite vector length—
at the beginning of each timestep—of 0.00001 are good choices for this
problem. We also carried out tangent-space simulations, which correspond
to the limit of an infinitesimal reference-to-satellite vector length. The
tangent-space simulations were carried out with a timestep of dt=0.002
with a Gram–Schmidt orthonormalization carried out every five steps.
Simulations both with and without constraints on the center of mass of the
satellite trajectories were analyzed. All these varied approaches led to sub-
stantially similar results.

We studied typical results for systems of 4×4, 8×8, 16×16, and
32×32 particles, all with square periodic boundaries. The Lyapunov
spectra for all these systems converge nicely to smooth featureless curves
(two samples are shown in Fig. 1), showing none of the discontinuous
stairstep structures now familiar from the hard-particle simulations of
Dellago, Forster, Hirschl, Hoover, MacNamara, Mareschal, Milanović,
and Posch. For comparison, two hard-disk spectra are shown in Fig. 2.
The more complicated hard-disk spectrum (upper curve) has an aspect
ratio of`0.75 rather than unity.

The statistical uncertainties in the exponents and the vectors decrease
with time. For the positive exponents they follow, fairly well, an exponential
decay:

DOliPt 4 e−tOliP..
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Fig. 1. Spectra of time-averaged Lyapunov exponents for 256 (right) and 1024 (left) soft
disks. In both cases the largest 2N of the 4N exponents are shown.

We followed the 256-particle system to a time of 5000 in order to make
sure that the gross features of the spectrum, which converge in a time of
order 10, underwent no qualitative changes at longer times. Our 1024-par-
ticle system, though necessarily followed for a much shorter time, seems to
behave in a similar manner. For 1024 particles the last positive exponent,
Ol2045P, was in error by about 0.03 after 2000 timesteps of 0.01 each.

0 512
0

7

<λ(j)> for N = 256
hard disks

0.7

0.8

Fig. 2. Spectra of time-averaged Lyapunov exponents for 256 hard disks of diameter s, with
Ns2

V=0.70 and 0.80. The upper hard-disk spectrum (0.80) was computed with geometric aspect
ratio Lx/Ly=`0.75 . Compare this to the lower spectrum (0.70), with an aspect ratio of
unity, to appreciate the effect of aspect ratio on ‘‘mode’’ degeneracy.
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In the absence of center-of-mass constraints the eigenvectors corre-
sponding to the last three of the calculated modes,

{d2N, d2N−1, d2N−2},

all correspond to constants of the motion for our equilibrium system. In
the full spectrum of 4N exponents, there are six vanishing exponents cor-
responding to the summed-up x and y coordinates, the summed-up px and
py momenta, the energy, and the long-time-averaged stationarity of satellite
displacements parallel to the phase-space flow direction. In energy-shell cal-
culations, with 4N−1 exponents there are only five vanishing exponents.

For plotting, we interpolated the individual components of the refer-
ence-to-satellite vectors onto a regular spatial grid by using a smooth-par-
ticle weighting function with a range of 2, 3, or 4. (4) We found that the
resulting ‘‘modes’’ (that is, the coordinate or momentum components of
the eigenvectors) all looked rather similar, with several highly-irregular
oscillations within the periodic box length. Though qualitative indications
of modal structure remain, with longer wavelengths more prominent for
time-averaged exponents nearer zero, as is illustrated in Fig. 3, the struc-
ture is much less distinct than that found for disks. Detailed results for
disks will soon be published by two of us. (10, 22)

To further characterize the d vectors we followed Milanović, (10) com-
puting both instantaneous and time-averaged values of the various second
moments,

{Odx2P, Ody2P, Odp2xP, Odp
2
yP, Odx ·dpxP, Ody ·dpyP},

x

y

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

δ  x

Fig. 3. Positive values of x components of d508 are shown for a system of 256 soft disks.
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Fig. 4. Time-averaged components for the Lyapunov Exponents: Odx2P, Ody2P, Odp2xP,
Odp2yP, Odx ·dpxP, Ody ·dpyP for 256 soft disks.

for all the vectors. Representative results for 256 soft disks are shown in
Fig. 4.

Like the spectra of exponents, these moments also follow rather fea-
tureless curves. Similar curves, not shown here, are obtained using hard
disks. (10, 22) It is interesting to see the positive correlation between the
coordinate and momentum components of the vectors [Odx ·dpxP and
[Ody ·dpyP]. This correlation is precisely what would be expected for

MODE 2045MODE 1

Fig. 5. Particles making above-average/below-average contributions to d1 and d2045 for 1024
soft disks are shown as larger/smaller disks.
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modes growing (or decaying) exponentially in the time, but it appears
throughout the spectrum.

Apart from the three special modes with vanishing (when averaged for
long times) Lyapunov exponents the remaining d vectors show no particu-
lar irregularities. The spectrum is smooth and featureless. In Fig. 5 we
emphasize those particles making above-average contributions to the first
and last of the positive modes (numbers 1 and 2045 for the 1024-particle
system) by showing the above-average contributors as larger disks. In the
lower-frequency ‘‘mode,’’ number 2045, the significant particles are more
numerous than in the higher-frequency mode, but display no special
sinusoidal character.

4. MODES OR NOT?

To determine whether or not ‘‘modes’’ are a useful concept for soft
potentials it is necessary first to develop one or more quantitative criteria
for modes and then to study the number-dependence of these criteria in
order to assess the large-system limit. Evidently the simplest possible modes
would display purely sinusoidal eigenvector components. The longest pos-
sible wavelength, `N, should correspond to the eigenvectors correspond-
ing to the smallest positive eigenvalues. Unfortunately a visual inspection
of these components gives ambiguous results. The small-eigenvalue eigen-
vectors appear to contain several Fourier components. Time averaging does
not help.

A second characteristic of each eigenvector is its fluctuation in time.
One would expect that ‘‘modes’’ should exhibit smaller fluctuations than
representative eigenvectors from the continuous part of the spectrum. Plots
of the (time-averaged) squares of the Lyapunov exponents are suggestive.
For soft disks the squares follow a smooth curve, with larger fluctuations
for both the smaller and the larger exponents, and a minimum for eigen-
values near the middle of the positive part of the spectrum. The size of
these exponent fluctuations decreases with increasing N. Fluctuations for
the exponents near the two ends of the spectrum vary approximately as
1/N, with a finite value for the large-N limit of Ol21P−Ol1P

2. For the large-
exponent end the number-dependence of the fluctuations is somewhat
better fitted as c+O(N−0.7). After the directions of the d vectors have con-
verged there are five vectors with relatively-small fluctuations—three of
these small fluctuations are precisely zero. These three correspond to the
five zero exponents expected for a system studied on the constant-energy
shell. Unrestricted simulations provide similar spectra, and fluctuations,
but with six rather than five vanishing exponents.
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Instantaneous snapshots of the vectors near OlP=0 do not show pure
modes. Time averaging provides smoothing, as well as reduced amplitudes,
but still no convincing evidence for modes. The strongest evidence for the
lack of modes in the soft-disk case comes from comparing eigenvectors for
the same modes, but generated with different computer programs or dif-
ferent initial conditions. Although all the long-time-averaged moments
agree (as they must) there is no evident correlation between the ‘‘modes’’
themselves generated with different computer programs.

Based on this computational evidence we have to conclude that neither
the Lyapunov spectrum nor the corresponding vectors show the clear and
interesting modal structure revealed in the hard-particle work. Lattice-rotor
eigenvector results, based on the extended XY model introduced by
Domany, Schick, and Swendsen, (23) yield Lyapunov spectra (24, 25) resembling
those for soft disks. In that model the square-lattice nearest-neighbor for-
celaw is a simple monotonic function of the angular difference Dh of two
adjacent rotors. Visual inspection of the eigenvectors for systems of up to
256 rotors showed no particular modal structures.

For soft disks there is a gradual loss of spatial correlations as |OlP|
decreases, with rather different sets of particles contributing to the corre-
sponding d vectors for OlP near zero. On the other hand, the highly-
correlated localization of the more unstable modes, for large values of
|OlP|, which can be well-characterized for much larger systems because
only a few d vectors need to be calculated, shows the same behavior for
soft and hard systems: relatively few particles, localized in coordinate space,
make the major contributions to both the coordinate and momentum
parts of the corresponding d vectors. (21)

5. CONCLUSIONS

Our investigation of Lyapunov vectors for a soft dense fluid and for
the lattice-rotor model indicates an absence of definite modes like those
found for hard disks and dumbbells. For soft disks the structures of all the
eigenvectors appear instead to reflect noise and fluctuations. It seems to us
that this finding is probably linked to the smooth continuous spectra asso-
ciated with the softer systems, with exponents going smoothly through
zero.

What difference is there between hard-particle and soft-particle
systems with continuous differentiable potentials? The hard particles, at
least for the small systems that can be examined now, have shown a dis-
tinct gap between the positive and negative Lyapunov exponents. This gap
will likely disappear in the large-system limit, (7, 10) but with the spectrum
[l versus (j/N), where j indexes the modes] showing an infinite slope. (10)
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There is certainly no corresponding gap with soft potentials. We have to
conclude that the modes have no special hydrodynamic significance, since
their very existence seems to hinge on the detailed nature of the interpar-
ticle forces and, perhaps, on system size. This finding seems to contradict
the general considerations used by McNamara and Mareschal to ‘‘predict’’
modes. (11) Theoretical understanding of what it takes to generate modes is
still missing, even in the simplest equilibrium case considered here. Some
interesting efforts have been made (26) by studying the spectra characterizing
large random matrices. But that work also fails to allow for qualitative
differences. At a minimum it would seem necessary to generalize these
efforts so as to reproduce the qualitative dependence of the spectra on both
dimensionality (two or three) and phase (fluid or solid).
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